Shortcuts

Source code for mmflow.datasets.flyingchairs

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Sequence

import numpy as np

from .base_dataset import BaseDataset
from .builder import DATASETS


[docs]@DATASETS.register_module() class FlyingChairs(BaseDataset): """FlyingChairs dataset. Args: split_file (str): File name of train-validation split file for FlyingChairs. """ def __init__(self, *args, split_file: str, **kwargs) -> None: self.split = np.loadtxt(split_file, dtype=np.int32).tolist() super().__init__(*args, **kwargs)
[docs] def load_data_info(self) -> None: """Load data information, including file path of image1, image2 and optical flow.""" # unpack FlyingChairs directly, will see `data` subdirctory. self.img1_dir = osp.join(self.data_root, 'data') self.img2_dir = osp.join(self.data_root, 'data') self.flow_dir = osp.join(self.data_root, 'data') # data in FlyingChairs dataset has specific suffix self.img1_suffix = '_img1.ppm' self.img2_suffix = '_img2.ppm' self.flow_suffix = '_flow.flo' img1_filenames = self.get_data_filename(self.img1_dir, self.img1_suffix) img2_filenames = self.get_data_filename(self.img2_dir, self.img2_suffix) flow_filenames = self.get_data_filename(self.flow_dir, self.flow_suffix) assert len(img1_filenames) == len(img2_filenames) == len( flow_filenames) self.load_img_info(img1_filenames, img2_filenames) self.load_ann_info(flow_filenames, 'filename_flow')
[docs] def load_img_info(self, img1_filename: Sequence[str], img2_filename: Sequence[str]) -> None: """Load information of image1 and image2. Args: img1_filename (list): ordered list of abstract file path of img1. img2_filename (list): ordered list of abstract file path of img2. """ num_file = len(img1_filename) for i in range(num_file): if (not self.test_mode and self.split[i] == 1) or (self.test_mode and self.split[i] == 2): data_info = dict( img_info=dict( filename1=img1_filename[i], filename2=img2_filename[i]), ann_info=dict()) self.data_infos.append(data_info)
[docs] def load_ann_info(self, filename: Sequence[str], filename_key: str) -> None: """Load information of optical flow. This function splits the dataset into two subsets, training subset and testing subset. Args: filename (list): ordered list of abstract file path of annotation. filename_key (str): the annotation e.g. 'flow'. """ num_files = len(filename) num_tests = 0 for i in range(num_files): if (not self.test_mode and self.split[i] == 1) \ or (self.test_mode and self.split[i] == 2): self.data_infos[ i - num_tests]['ann_info'][filename_key] = filename[i] else: num_tests += 1
Read the Docs v: latest
Versions
latest
stable
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.